Sentiment Analysis of Bali Hai Cruises Reviews Using Support Vector Machine Algorithm
DOI:
https://doi.org/10.30649/japk.v14i2.113Keywords:
sentiment analysis, online reviews, bali hai cruises, support vector machineAbstract
This paper presents sentiment analysis in online reviews using Support Vector Machine (SVM) algorithm. This research aims to classify the sentiment of online reviews into positive or negative by utilizing the SVM algorithm. The dataset used in this research consists of online reviews from May 2020 to April 2024 from www.tripadvisor.com. The results show the effectiveness of the SVM algorithm in accurately categorizing sentiment in online reviews, with a high level of precision and recall. The findings of this study have important implications for understanding and analyzing sentiment in online content, and can be utilized in various applications such as market research, customer feedback analysis, and opinion gathering.
References
Akhmad, E. P. A., Adi, K., Widodo, A. P. (2023). Machine learning approach to customer sentiment analysis in twitter airline reviews. E3S Web of Conferences 448, 02044 https://doi.org/10.1051/e3sconf/202344802044
Alemayehu, F., Meshesha, M., Abate, J. (2023). Amharic Political Sentiment Analysis Using Deep Learning Approaches. Scientific Reports https://doi.org/10.1038/s41598-023-45137-9
Anita, Wulan, Sari., Teguh, Iman, Hermanto., Meriska, Defriani. (2023). Sentiment Analysis of Tourist Reviews Using K-Nearest Neighbors Algorithm and Support Vector Machine. Sinkron : jurnal dan penelitian teknik informatika, doi: 10.33395/sinkron.v8i3.12447
Alzamzami, Fatimah. M. Hoda, A. El Saddik. (2020) “Light Gradient Boosting Machine for General Sentiment Classification on Short Texts: A Comparative Evaluation”. IEEE Access.
Balihaicruises. (2024). Tentang Kami. Diakses dari https://balihaicruises.com/about-us/ tanggal 16/04/2024.
Breiman, L.E.O. (2001). Random Forests. Mach. Learn. 45, p.5-32.
Chaoyou, Guo., Ma, Yankun., Zhe, Xu., Cao, Mengmeng., Qian, Yao. (2019). An Improved Oversampling Method for imbalanced Data–SMOTE Based on Canopy and K-means. doi: 10.1109/CAC48633.2019.8997367
Enrico, Laoh., Isti, Surjandari., Nadhila, Idzni, Prabaningtyas. (2019). Enhancing Hospitality Sentiment Reviews Analysis Performance using SVM N-Grams Method. doi: 10.1109/ICSSSM.2019.8887662
G., Vinodhini., R., M., Chandrasekaran. (2014). Sentiment Mining Using SVM-Based Hybrid Classification Model. doi: 10.1007/978-81-322-1680-3_18
Hamnah, Rao. (2023). Sentiment Analysis using Deep Learning: A Domain Independent Approach. doi:10.1109/ICEARS56392.2023.10085676
Inder, M. D. (2022). Sentiment Analysis Techniques in Recent Works Using GRA Methodology. REST Journal on Banking, Accounting and Business Vol: 1(3), September 2022 DOI: https://doi.org/10.46632/jbab/1/3/8
Jan Linnenbrink, Carles Milà, Marvin Ludwig , and Hanna Meyer. (2023). kNNDM: k-fold Nearest Neighbour Distance Matching Cross-Validation for map accuracy estimation. doi: 10.5194/egusphere-2023-1308
Joseph, R., Barr., Marcus, Sobel., Tyler, Thatcher. (2022). Upsampling, a comparative study with new ideas. doi:10.1109/ICSC52841.2022.00059
Kui, Lu., Jiesheng, Wu. (2019). Sentiment Analysis of Film Review Texts Based on Sentiment Dictionary and SVM. doi: 10.1145/3319921.3319966
N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer, (2002). "SMOTE: Synthetic Minority OverSampling Technique," J. Artif. Intell. Res., vol. 16, p. 321–357.
Nguyen, TT., Nguyen, PC. (2023). K-Fold Cross-Validation Technique for Predicting Ultimate Compressive Strength of Circular CFST Columns. ICSCEA 2021. Lecture Notes in Civil Engineering, vol 268. Springer, Singapore. https://doi.org/10.1007/978-981-19-3303-5_79
Ramadhan, N. G. ., & Ramadhan, T. I. . (2022). Analysis Sentiment Based on IMDB Aspects from Movie Reviews using SVM. Sinkron: Jurnal dan Penelitian Teknik Informatika, 6(1), 39-45. https://doi.org/10.33395/sinkron.v7i1.11204
Saraswati, Kajal Rai & Handa, Disha. (2022). Comparative Analysis of KNN Classifier with K-Fold Cross-Validation in Acoustic-Based Gender Recognition. Lecture Notes in Networks and Systems, vol 445. Springer, Singapore. https://doi.org/10.1007/978-981-19-1412-6_34
Utkarsh, Pandey., Sanyam, Shukla., Rajesh, Wadhvani. (2022). OCSK-SMOTE: An improved minority oversampling technique for unbalanced dataset using One-Class SVM and K-means. doi: 10.1109/icacite53722.2022.9823814
V. Malavade and B. Sureshkumar. (2023). "Comparative Analysis of Artificial Intelligence Techniques for Sentiment Analysis and its Challenges," 7th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, pp. 670-675, doi: 10.1109/ICICCS56967.2023.10142264.
Vivek, J., Joshi., Sanjay, W, Patel., Radhika, Agarwal., Himanshu, Arora. (2023). Sentiments Analysis using Machine Learning Algorithms. doi: 10.1109/ICEARS56392.2023.10085432
Yadu, R. dan Shukla, R. (2022). A Hybrid Model Integrating Adaboost Approach for Sentimental Analysis of Airline Tweets. Revue d'Intelligence Artificielle Vol. 36, No. 4, August, 2022, pp. 519-528.
Yifei, Zhao. (2023). Overview of Deep Learning Methods for Sentiment Analysis. Advances in Engineering Technology Research, doi: 10.56028/aetr.5.1.367.2023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ekka Pujo Ariesanto Akhmad, Didik Purwiyanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




