Data Mining Using Linear Regression to Predict the Stock Price of Shipping Companies
DOI:
https://doi.org/10.30649/japk.v10i2.13Keywords:
data mining, linear regression, stock price, CRISP-DM, root mean square errorAbstract
The movement of the closing price of BULL shares tends to experience price variations every day. Investors need appropriate action, so that existing risks can be reduced by knowing the ups and downs of stock prices in the future and predicting the optimal policy steps to make appropriate share buying / selling decisions. The purpose of this study is to apply data mining using linear regression to predict the share price of shipping companies. The research location is on the Indonesia Stock Exchange, Jakarta. The population in this study are all shipping companies listed on the Indonesia Stock Exchange. The type of nonprobability sampling chosen was purposive sampling and quota sampling. The purposive sampling used is 1 shipping company, namely PT. Buana Lintas Lautan, Tbk (BULL). The sampling quota used in this study is the time series data for the daily opening price, the highest price, the lowest price, the closing price, and the volume of shares during the BULL daily period for 1 year 2 months between June 2019 and July 2020. This study uses the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. The data mining process based on CRISP-DM consists of 6 phases, namely Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment. The results showed that there is still a difference between the closing price of the output of the test data and the closing price of the actual shares on the stock exchange. Evaluation of the value of Root Mean Square Error (RMSE) shows the plus number 7.522 from the actual data on the closing price of shares in the daily period of PT. BULL.
References
Admin. Teknik Peramalan S1 Pertemuan 5. (2012). Diakses dari http://ocw.stikom.edu/course/download/2012/11/16-03- 2012.15.12.32_745_410103096_Teknik-Peramalan-S1- SI_P1_Pert5_1.doc.
Arikunto, Suharsimi. (2010). Prosedur Penelitian : Suatu Pendekatan Praktik. Jakarta: Rineka Cipta.
Atikah, Nabihah Hanun. (2017). Pembuatan Aplikasi Prediksi Harga Saham Berbasis Web Menggunakan Metode Holt’s dan Bayesian Belief Network: Studi Kasus di PT Bank Central Asia, Tbk. Tugas Akhir. Departemen Sistem Informasi, Fakultas Teknologi Informasi, Institut Sepuluh Nopember Surabaya.
B. Heizer and Render. (2014). Operation Management Sustainability and Suply Chain Management, 11th Edition, Pearson.
Bommareddy, Sasidhar Reddy, et. al. (2018). Predicting The Stock Price Using Linear Regression. International Journal of Advanced Research in Computer Science. Volume 9, Special Issue No. 3, May 2018, 81-85.
D. Hatidja. (2011). Penerapan Model Arima Untuk Memprediksi Harga Saham PT Telkom Tbk. Jurnal Ilmiah Sains, Vol. 11, No. 1, Pp. 116–123.
Duwi Consultant. (2011). Analisis Regresi Linear Sederhana. Diakses dari http://duwiconsultant.blogspot.com/2011/11/analisis-regresi-linier-sederhana.html tanggal 5/12/2019.
Izzah, Abidatul dan Ratna Widyastuti. (2017). Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression Untuk Pencegahan Data Outlier. KINETIK, Vol. 2, No. 3, Agustus 2017, Hal. 141-150.
Konsultanstatistik. (2009). Regresi Linear Berganda. Diakses dari http://www.konsultanstatistik.com/2009/03/regresi-linear.html tanggal 5/12/2019.
Padhye, Sudip and Karuna Gull. (2016). Regression Analysis for Stock Market Prediction using Weka Tool without Sentiment Analysis. Sixth International Conference on Computational Intelligence and Information Technology – CIIT 2016
Poornima S. P., Priyanka C. N., Reshma P., Suraj Kr Jaiswal, and SurendraBabu K. N. (2019). Stock Price Prediction using KNN and Linear Regression. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249–8958, Volume-8, Issue-5S, May, 2019.
R. Zunaidhi, W. Saputra, N. Sari. (2008). Aplikasi Peramalan Penjualan Menggunakan Metode Regresi Linier. Jurnal Scan, Vol. 2, No. 3, pp. 41-45.
Roselina. (2012). Aplikasi Diagnosa Penyakit Asma Menggunakan Bayesian Network Berbasis Web. Teknik Informatika. Vol. 1, September 2012, Riau.
Shearer, Colin. (2000). The CRIPS-DM Model: The New Blueprint for Data Mining. Journal of Data Warehousing, Vol. 5, No. 4 Fall 2000.
Sugiyono. (2012). Metode Penelitian Bisnis. Bandung: Penerbit ALFABETA.
Suntoro, Joko. (2019). Data Mining Algoritma dan Implementasi dengan Pemrograman PHP. Jakarta: PT. Elex Media Komputindo.
T. Kanungo, D. Mount, N. Netanyahu. (2002). An Efficient K-Means Clustering Algorithm: Analysis and Implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 7.
Tim Riset CNBC Indonesia. (2019). di era tol laut emiten kapal berpeluang cetak keajaiban. Diakses dari https://www.cnbcindonesia.com/market/20190225205153-17-57543/di-era-tol-laut-emiten-kapal-berpeluang-cetak-keajaiban/2 tanggal 24/12/2019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Ekka Pujo Ariesanto Akhmad
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.