Latent Dirichlet Allocation Topic Modeling for Stock Information
DOI:
https://doi.org/10.30649/japk.v14i1.98Keywords:
topic modeling, latent dirichlet allocationAbstract
Investors obtain data or share information through the Indonesia Stock Exchange web page. From online information portals, investors occasionally obtain more knowledge about stock analysis and profitable stock projections. However, it takes time for investors to identify subjects that frequently come up and become popular stock information themes. The core of online stock information therefore requires subject modeling. Topic modeling, which seeks to look at the issues being discussed on a page of an internet stock information website, is the focus of this study. Research information is combined with 181 stock information February to July 2021, web source: kontan.co.id. Utilizing the Latent Dirichlet Allocation approach, topic modeling was tested. The topic modeling created 3 important groups and the distribution of the 10 creator words of each topic from online stock information. The topic modeling description creates a thirty-word note that occurs frequently from each topic.
References
Bansal, H. (2020). Latent Dirichlet Allocation.https://iq.opengenus.org/latent-dirichlet-allocation, 12 November 2020.
B. S. Halima & S. Chitrakala. (2016). Trending topic analysis using novel sub topic detection model. 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). IEEE. pp. 157-161.
Bashri, M. F. A. dan Retno Kusumaningrum. (2017). Sentiment Analysis Using Latent Dirichlet Allocation and Topic Polarity Wordcloud Visualization. Fifth International Conference on Information and Communication Technology (ICoICT)
Blei, David M. (2012). Probabilistic Topic Models, Communications of the ACM Vol. 55, No. 4, pp77-84.
Blei, David M., Andrew Y. Ng, Michel I. Jordan. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research 3 (2003) 993-1022
Blei, David M. and John D. Lafferty. (2007). A Correlated Topic Model of Science, Annals of Applied Statistics Vol. 1, No. 1, pp17-35.
Calheiros, A. C., Moro, S., & Rita, P. (2017). Sentiment classification of consumer-generated online reviews using topic modeling. Journal of Hospitality Marketing and Management, 26(7), 675–693. https://doi.org/10.1080/19368623.2017.1310075
Dadgar, S. M. H., et al. (2016). A novel text mining approach based on TF-IDF and Support Vector Machine for news classification. IEEE International Conference on Engineering and Technology (ICETECH). IEEE.pp.112-116.
E. S. Usop, R. R. Isnanto, and R. Kusumaningrum, (2017). Part of Speech Features for Sentiment Classification based on Latent Dirichlet Allocation, in Proc. of 2017 4th Int. Conf. on Information Tech., Computer, and Electrical Engineering (ICITACEE), 2017, pp. 27–30.
Fadillah Z. Tala. (2003). A study of stemming effects on Information retrieval in Bahasa Indonesia. Institute for Logic, Language and Computation, Universiteit van Amsterdam, Netherlands.
Grun, Bettina and Kurt Hornik. (2011). topicmodels: An R Package for Fitting Topic Model, Journal of Statistical Software Vol. 40, No. 13.
I R Putri dan R Kusumaningrum. (2017). Latent Dirichlet Allocation (LDA) for Sentiment Analysis Toward Tourism Review in Indonesia. J. Phys.: Conf. Ser. 801 0120
J. F. Yeh, Y. S. Tan & C. H. Lee. (2016). Topic detection and tracking for conversational content by using conceptual dynamic Latent Dirichlet Allocation, Neurocomputing.
Jing, Qi. (2015). Searching for Economic Effects of User Specified Event Based on Topic Modelling and Event Reference, Jordery School of Computer Science, Acadia University.
Kusumaningrum, Retno, dkk. (2016). Classification of Indonesian News Articles based on Latent Dirichlet Allocation. International Conference on Data and Software Engineering (ICoDSE), Udayana, Bali.
Lucini, F. R., Tonetto, L. M., Fogliatto, F. S., & Anzanello, M. J. (2020). “Text mining approach to explore dimensions of airline customer satisfaction using online customer reviews”. Journal of Air Transport Management, 83(December 2019), 101760. https://doi.org/10.1016/j.jairtraman.2019.101760
Putra, I Made Kusnanta Bramantya. (2017). Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA). Jurnal Teknik ITS Vol. 6, No. 2 (2017), 2337-3520 (2301-928X Print)
Pypi.org. (2021). pyLDAvis 3.3.1. https://pypi.org/project/pyLDAvis/, 24/03/2021
Rachman, F. F., Nooraeni, R., & Yuliana, L. (2021). Public Opinion of Transportation integrated (Jak Lingko), in DKI Jakarta, Indonesia. Procedia Computer Science, 179(2020), 696–703. https://doi.org/10.1016/j.procs.2021.01.057
Sahria, Yoga dan Dhomas Hatta Fudholi. (2020). Analisis Topik Penelitian Kesehatan di Indonesia Menggunakan Metode Topic Modeling LDA (Latent Dirichlet Allocation). Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 4 No. 2 (2020) 336 – 344
Sarkar, Dipanjan. (2016). Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable Insights from Your Data. APress. Bangalore, Karnataka, India.
Setijohatmo, U. T., dkk. (2020). Analisis metoda Latent Dirichlet Allocation untuk klasifikasi dokumen laporan tugas akhir berdasarkan pemodelan topik. Prosiding The 11th Industrial Research Workshop and National Seminar Bandung, 26-27 Agustus 2020.
T. Kanan dan E. A. Fox. (2016). Automated Arabic text classification with P-Stemmer, machine learning, and a tailored news article taxonomy. J. Assoc. Inf. Sci. Technol.
Tong, Zhou & Haiyi. Zhang (2016). A text mining research based on LDA topic modelling, Jodrey School of Computer Science, Acadia University, Wolfville, NS, Canada, vol. 10.5121/csit.2016.60616, p. 201–210.
Wahyuni, Eka Dyar, dkk. (2020). Klasifikasi Teks dengan Python. Sidoarjo: Indomedia Pustaka.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ekka Pujo Ariesanto Akhmad, Carlos Lazaro Prawirosastro, Budi Priyono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




