Shipping Safety Innovation: The Role of Big Data and IoT in Reducing Risk

Authors

  • Mursidi Mursidi Program Studi Teknologi Rekayasa Permesinan Kapal, Fakultas Vokasi Pelayaran, Universitas Hang Tuah
  • Aris Sarjito Program Studi Manajemen Pelabuhan dan Logistik Maritim, Fakultas Vokasi Pelayaran, Universitas Hang Tuah

DOI:

https://doi.org/10.30649/japk.v15i1.132

Keywords:

accident prediction, big data, IoT, risk mitigation, shipping safety

Abstract

Shipping safety is a crucial aspect in the maritime industry which faces various risks of accidents. This research aims to examine the innovative role of Big Data and the Internet of Things (IoT) in improving shipping safety through accident prediction and prevention. The research method used is qualitative using secondary data from industry reports, journal articles and related publications. The research results show that Big Data can improve the ability to predict and prevent shipping accidents by analyzing weather data, ship movements and sea conditions to produce accurate predictive models. In addition, IoT makes a specific contribution in real-time monitoring and risk mitigation through sensors and AIS systems that provide real-time data for fast and informed decision making. However, the integration of Big Data and IoT faces major challenges such as cybersecurity, implementation costs, and the need for adequate infrastructure. Nevertheless, the prospects for developing this technology are very promising with increased security protocols, reduced costs through innovation, and development of maritime telecommunications infrastructure. In conclusion, Big Data and IoT have great potential to improve shipping safety, but require attention to existing challenges to realize their full benefits.

References

Agustini, S. A., Mulyatno, I. P., & Amiruddin, W. (2023). Perancangan Sistem Digitalisasi Monitoring Data RPM Engine dan Temperatur Minyak Lubrikan Kapal Berbasis Internet of Things (IoT) dengan Metode Simulasi Prototype ESP32. Jurnal Teknik Perkapalan, 11(4).

Akpan, F., Bendiab, G., Shiaeles, S., Karamperidis, S., & Michaloliakos, M. (2022). Cybersecurity challenges in the maritime sector. Network, 2(1), 123–138.

Arifin, M. D. (2024). Review Pemanfaatan Big Data dan Internet of Things (IoT) Dalam Industri Perkapalan. Jurnal Teknik, Teknologi Kelautan dan Energi Terbarukan, 2(01), 1–7.

Aslam, S., Michaelides, M. P., & Herodotou, H. (2020). Internet of ships: A survey on architectures, emerging applications, and challenges. IEEE Internet of Things Journal, 7(10), 9714–9727.

Ben Farah, M. A., Ukwandu, E., Hindy, H., Brosset, D., Bures, M., Andonovic, I., & Bellekens, X. (2022). Cyber security in the maritime industry: A systematic survey of recent advances and future trends. Information, 13(1), 22.

Bui, V. D., & Nguyen, H. P. (2021). A Comprehensive Review on Big Data-Based Potential Applications in Marine Shipping Management. Int. J. Adv. Sci. Eng. Inf. Technol, 11(3), 1067–1077.

Cil, A. Y., Abdurahman, D., & Cil, I. (2022). Internet of Things enabled real time cold chain monitoring in a container port. Journal of Shipping and Trade, 7(1), 9.

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE Publications.

Durlik, I., Miller, T., Cembrowska-Lech, D., Krzemińska, A., Złoczowska, E., & Nowak, A. (2023). Navigating the sea of data: a comprehensive review on data analysis in maritime IoT applications. Applied Sciences, 13(17), 9742.

Fan, W., & Bifet, A. (2013). Mining big data: current status, and forecast to the future. ACM SIGKDD Explorations Newsletter, 14(2), 1–5.

Forti, N., d’Afflisio, E., Braca, P., Millefiori, L. M., Carniel, S., & Willett, P. (2022). Next-Gen intelligent situational awareness systems for maritime surveillance and autonomous navigation [Point of View]. Proceedings of the IEEE, 110(10), 1532–1537.

Global Maritime Forum. (2023). Advancing maritime telecommunication infrastructure for a safer and more connected world.

International Maritime Organization (IMO). (2021). The impact of IoT on maritime safety and efficiency.

Jović, M., Tijan, E., Marx, R., & Gebhard, B. (2019). Big data management in maritime transport. Pomorski Zbornik, 57(1), 123–141.

Kim, G., & Lim, S. (2022). Development of an interpretable maritime accident prediction system using machine learning techniques. IEEE Access, 10, 41313–41329.

Kouvaras, A. (2022). Big Maritime Data: The promises and perils of the Automatic Identification System: Shipowners and operators’ perceptions.

Liu, H., Zhang, Y., & Wang, Z. (2023). Enhancing maritime communication infrastructure for IoT integration. Marine Technology Society Journal, 57(1), 34–45.

Liu, X., Chen, J., & Li, W. (2022). Enhancing maritime safety with real-time AIS data analytics. Safety Science, 145, 105517.

Ma, Q., Tang, H., Liu, C., Zhang, M., Zhang, D., Liu, Z., & Zhang, L. (2024). A big data analytics method for the evaluation of maritime traffic safety using automatic identification system data. Ocean & Coastal Management, 251, 107077.

McKinsey & Company. (2022). The future of maritime technology and innovation. McKinsey & Company.

Mou, J. M., Van der Tak, C., & Ligteringen, H. (2010). Study on collision avoidance in busy waterways by using AIS data. Ocean Engineering, 37(5–6), 483–490.

National Oceanic and Atmospheric Administration (NOAA). (2022). Advances in weather prediction and analysis.

Prasetyo, H. E. (2023). Optimalisasi Industri Perkapalan Guna Meningkatkan Industri Jasa Maritim dalam Rangka Mendukung Strategi Pertahanan Negara di Laut. Journal of Industrial Engineering & Management Research, 4(2), 57–63.

Sadani, A. (2023). Optimalisasi Olah Gerak Kapal Sandar di Platform Guna Menunjang Keselamatan Pelayaran pada CB. Galatea.

Saputra, H., Atmaja, A. B. K., Istardi, D., & Satoto, S. W. (2016). Penggunaan Data Automatic Identification System (AIS) untuk Mengetahui Pergerakan Kapal. Jurnal Integrasi, 8(2), 139–143.

Tirtana, S. B. (2016). Pentingnya Penguasaan Metode Great Circle dalam Pembuatan Passage Plane di MV. Sari Indah. Sekolah Tinggi Ilmu Pelayaran Jakarta.

Wang, H., Osen, O. L., Li, G., Li, W., Dai, H.-N., & Zeng, W. (2015). Big data and industrial Internet of Things for the maritime industry in Northwestern Norway. TENCON 2015-2015 IEEE Region 10 Conference, 1–5.

Yang, D., Wu, L., Wang, S., Jia, H., & Li, K. X. (2019). How big data enriches maritime research–a critical review of Automatic Identification System (AIS) data applications. Transport Reviews, 39(6), 755–773.

Yang, Z., Li, K., & Chen, X. (2021). Cost-benefit analysis of implementing IoT and big data in maritime safety. Journal of Maritime Economics & Logistics, 23(4), 567–572.

Zaman, I., Pazouki, K., Norman, R., Younessi, S., & Coleman, S. (2017). Challenges and opportunities of big data analytics for upcoming regulations and future transformation of the shipping industry. Procedia Engineering, 194, 537–544.

Zhang, Y., Wang, Z., & Liu, H. (2023). Real-time monitoring and predictive maintenance in maritime industry using IoT. Journal of Marine Science and Technology, 28(3), 455–467.

Downloads

Published

01-09-2024

How to Cite

Mursidi, M., & Sarjito, A. (2024). Shipping Safety Innovation: The Role of Big Data and IoT in Reducing Risk. JURNAL APLIKASI PELAYARAN DAN KEPELABUHANAN, 15(1), 162–174. https://doi.org/10.30649/japk.v15i1.132

Most read articles by the same author(s)