Human Eye Iris Verification to Accept or RejectThe Identity of The Claimed by Ship Passengers
DOI:
https://doi.org/10.30649/japk.v8i2.47Keywords:
verification, iris recognition, false non match rate, genuine acceptance rate, false match rateAbstract
In the process of identifying the passenger identity of the ship there are some problems that arise is the problem identification and verification, which makes the process inefficient identity recognition. Verification problems will be solved by the method of iris recognition, which proved to be efficiently used to solve problems such as identity recognition process. The results showed that the method is able to verify the iris recognition eye imagery with a 100% success rate for the same test images to the image database of the same eye. Testing different test images with the image database from the same eye (intra-class) generates False Non Match Rate (FNMR) 15,90% and Genuine Acceptance Rate (GAR) can be calculated by the formula GAR = 1 – FNMR, or GAR = 1 – 15,90% the result is 84,10%. Testing different test images with the image database of different eyes (inter-class) generates a False Match Rate (FMR) 27,72%.
References
Ahmad Poursaberi and Babak N. Araabi. (2005). ”A Novel Iris Recognition System Using Morphological Edge Detector and Wavelet Phase Features”. www.icgst.com
Ajay Kumar and Arun Passi. (2008). “Comparison and Combination of Iris Matchers for Reliable Personal Identification,” In Proc. of Inl. Conf. on CVPR.
Boles, Wageeh W. and Boashash, Boualem (1998). “A Human Identification Technique Using Images of the Iris and Wavelet Transform”. IEEE Transactions on Signal Processing. 46 (4): 1185-1188, May 1998.
C. H. Daouk, et al. (2002). “Iris Recognition”. Proceeding of the IEEE ISSPIT, Marrakesh, pp. 558-562.
Chinese Academy of Sciences-Institute of Automation. (2003). “Database of 756 Greyscale Eye Images”. http://www.sinobiometrics.com. Version 1.0.
Daugman, J. G. (1993). “High confidence visual recognition of persons by a test of statistical independence.” IEEE Transactions on Pattern Analysis and Machine Intelligence. 15 (11): 1148-1161
Darma Putra, I K.G. (2009). “Sistem Biometrika-Konsep Dasar, Teknik Analisis Citra, dan Tahapan Membangun Aplikasi Sistem Biometrika”. Yogyakarta: Penerbit ANDI.
Darma Putra, I K. G. (2010). “Pengolahan Citra Digital”. Yogyakarta: Penerbit ANDI.
Ezzeldine Moukhtar , Mostafa El-Kadi et. al. (2005), “Rejection Analysis of an Iris Recognition System”, In Proc. of Inl. Cong. on GVIP.
Jafar M. H. Ali and Aboul Ella Hassanien, (2003). ”An Iris Recognition System to Enhance e-Security Environment Based on Wavelet Theory”. AMO – Advanced Modelling and Optimization, Vol 5, Number 2.
Lim, Shinyoung, et. al. (2001). ”Efficient Iris Recognition through Improvement of Feature Vector and Classifier”. ETRI Journal / Volume 23, Issue 2.
Maimunah dan Agus Harjoko. (2007). ”Sistem Pengenalan Iris Mata Manusia dengan Menggunakan Transformasi Wavelet”. Seminar Nasional Aplikasi Teknologi Informasi (SNATI) 2007, Yogyakarta, 16 Juni 2007.
Munir, Rinaldi. (2004). ”Pengolahan Citra Digital dengan Pendekatan Algoritmik”. Bandung: Penerbit INFORMATIKA.
Munir, Rinaldi. (2006). ”Aplikasi Image Thresholding untuk Segmentasi Objek”. Makalah I SNATI. Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Ekka Pujo Ariesanto Akhmad

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.